Nuprl Definition : plus-ify
11,40
postcript
pdf
plus-ify{i:l}(
es
;
ff
;
is_req
;
is_ack
;
awaiting
;
owes_ack
)
==
i
,
j
:
ff
.C.
==
owes_ack
(
i
,
j
) initially@
i
= ff &
awaiting
(
i
,
j
) initially@
i
= ff
==
& (
e
:E.
== & (
([
e
:
i
is_req
j
]
((
awaiting
(
i
,
j
) when
e
) = ff))
== & (
& ([
e
:
i
is_ack
j
]
((
awaiting
(
i
,
j
) after
e
) = ff))
== & (
& ([
e
:
i
is_req
j
]
((
awaiting
(
i
,
j
) after
e
) = tt))
== & (
& ((loc(
e
) =
i
& (
((
awaiting
(
i
,
j
) after
e
) = (
awaiting
(
i
,
j
) when
e
))))
== & (& (
([
e
:
i
is_ack
j
]
[
e
:
i
is_req
j
]))
== & (
& ([
e
:
i
is_ack
j
]
((
owes_ack
(
i
,
j
) when
e
) = tt))
== & (
& ([
e
:
i
is_req
j
]
((
owes_ack
(
i
,
j
) after
e
) = tt))
== & (
& ([
e
:
i
is_ack
j
]
((
owes_ack
(
i
,
j
) after
e
) = ff))
== & (
& ((loc(
e
) =
i
& (
((
owes_ack
(
i
,
j
) after
e
) = (
owes_ack
(
i
,
j
) when
e
))))
== & (& (
([
e
:
i
is_req
j
]
[
e
:
i
is_ack
j
]))
== & (
& (((loc(
e
) =
i
) c
((
owes_ack
(
i
,
j
) after
e
) = tt))
== & (& (
(
e'
:E. ((
e
<
e'
) & [
e'
:
i
is_ack
j
]))))
latex
clarification:
plus-ify{i:l}
plus-ify
(
es
;
ff
;
is_req
;
is_ack
;
awaiting
;
owes_ack
)
==
i
:
ff
.C,
j
:
ff
.C.
==
es-initially(
es
;
i
;
owes_ack
(
i
,
j
)) = ff
& es-initially(
es
;
i
;
awaiting
(
i
,
j
)) = ff
==
& (
e
:es-E(
es
).
== & (
(snd-it(
ff
;
is_req
;
e
;
i
;
j
)
(es-when(
es
; (
awaiting
(
i
,
j
));
e
) = ff
))
== & (
& (rcv-it(
ff
;
is_ack
;
e
;
i
;
j
)
(es-after(
es
; (
awaiting
(
i
,
j
));
e
) = ff
))
== & (
& (snd-it(
ff
;
is_req
;
e
;
i
;
j
)
(es-after(
es
; (
awaiting
(
i
,
j
));
e
) = tt
))
== & (
& ((es-loc(
es
;
e
) =
i
Id
== & (& (
& (
(es-after(
es
; (
awaiting
(
i
,
j
));
e
) = es-when(
es
; (
awaiting
(
i
,
j
));
e
)
)))
== & (& (
(rcv-it(
ff
;
is_ack
;
e
;
i
;
j
)
snd-it(
ff
;
is_req
;
e
;
i
;
j
)))
== & (
& (snd-it(
ff
;
is_ack
;
e
;
i
;
j
)
(es-when(
es
; (
owes_ack
(
i
,
j
));
e
) = tt
))
== & (
& (rcv-it(
ff
;
is_req
;
e
;
i
;
j
)
(es-after(
es
; (
owes_ack
(
i
,
j
));
e
) = tt
))
== & (
& (snd-it(
ff
;
is_ack
;
e
;
i
;
j
)
(es-after(
es
; (
owes_ack
(
i
,
j
));
e
) = ff
))
== & (
& ((es-loc(
es
;
e
) =
i
Id
== & (& (
& (
(es-after(
es
; (
owes_ack
(
i
,
j
));
e
) = es-when(
es
; (
owes_ack
(
i
,
j
));
e
)
)))
== & (& (
(rcv-it(
ff
;
is_req
;
e
;
i
;
j
)
snd-it(
ff
;
is_ack
;
e
;
i
;
j
)))
== & (
& (((es-loc(
es
;
e
) =
i
Id) c
(es-after(
es
; (
owes_ack
(
i
,
j
));
e
) = tt
))
== & (& (
(
e'
:es-E(
es
). (es-causl(
es
;
e
;
e'
) & snd-it(
ff
;
is_ack
;
e'
;
i
;
j
)))))
latex
Definitions
ff
.C
,
x
initially@
i
,
x
:
A
.
B
(
x
)
,
ff
,
A
,
x
when
e
,
P
Q
,
[
e
:
i
p
j
]
,
P
Q
,
A
c
B
,
Id
,
loc(
e
)
,
s
=
t
,
,
(
x
after
e
)
,
f
(
a
)
,
tt
,
x
:
A
.
B
(
x
)
,
E
,
P
&
Q
,
(
e
<
e'
)
,
[
e
:
i
p
j
]
FDL editor aliases
plus-ify
origin